Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Tania Allen
Dr Jana Vermaas and Ketshepileone Matlhoko are working on research that leaves your washing clean and fresh without the use of any detergents, which is also beneficial to the environment.

Cold water or hot water? Omo or Skip? Laundry blues is a reality in most households and when you add stains to the equation, then what was supposed to be part of your weekly household routine, becomes frustrating and time consuming. 

Researchers at the University of the Free State (UFS) are conducting research that is putting a whole new environmentally friendly spin on laundry day.

Sustainability and environmental conservation

Dr Jana Vermaas, Lecturer in the Department of Sustainable Food Systems and Development at the UFS, is passionate about textiles and sustainability – almost a decade ago, she conducted a study on the efficacy of anolyte as a disinfectant for textiles.

She describes the process: “During electrochemical activation, a dilute solution of natrium chloride/salt passes through a cylindrical electrolytic cell where the anodic and cathodic chambers are separated. Two separate streams of electrochemically activated water are produced. Anolyte as water was produced at the positive electrode and has a low pH, high oxidation-reduction potential and contains dissolved chloride, oxygen, and hydroxyl radical. It also has an antimicrobial effect.”

The benefits of this process are in line with her enthusiasm for environmental conservation. 

According to Dr Vermaas, the amount of water and chemicals used to clean textile articles is massive. “Chemicals used to disinfect, for example, hospital laundry, are hazardous. Not all laundries in the industry have a closed loop system or try to remove the chemicals before the wastewater is discarded.”

“Different amounts of detergents have various effects on our fauna and flora. Due to their low biodegradability, toxicity, and high absorbance of particles, detergents can reduce the natural water quality, cause pH changes in soil and water, lead to eutrophication (too many nutrients), reduce light transmission, and increase salinity in water sources.”

“But with the catholyte and anolyte process, water returns to its original status, which means that the water solution becomes inactive again after production where it existed in a metastable state while containing many free radicals and a variety of molecules for 48 hours. Thus, no chemicals are left in the wastewater. The water can therefore be recycled, not as potable water but, for example, to flush toilets or to water plants.

“We should do what we can to save water,” she says. 

Should you, like Dr Vermaas, also feel strongly about protecting the environment and want to obtain one of these machines that leaves your washing clean and fresh without the use of any detergents, you will be able to find such an appliance in South Arica. However, it does not come cheap. “It is a bit costly for residential use, but might be more accessible in the future,” states Dr Vermaas, who is of the opinion that it is a more sustainable option for commercial laundries.

Detergency properties and colourfastness 

Recently, more research has been conducted on this topic, but with a focus on the detergency properties of the catholyte to clean different textile fibres (natural and synthetic). Catholyte, she explains, is water produced at the negative electrode with a high pH, low oxidation-reduction potential, containing alkaline minerals. It also has surface active agents that increase the wetting properties, and it is an antioxidant. 

“A master’s student in the department, Ketshepileone Matlhoko, will be submitting her dissertation at the end of November on the possibility of using the catholyte as a scouring agent to clean raw wool,” says Dr Vermaas. 

The department is also conducting studies to investigate the influence of both catholyte and anolyte on colourfastness.

*Graphic: Production of electrolysed water (Nakae and Indaba, 2000). Diagram: Supplied



News Archive

UFS on energy-saving mode
2009-09-15

The University of the Free State (UFS) has undertaken several measures to reduce energy consumption on the Main Campus in Bloemfontein.

“Part of Eskom’s strategy is that all the main universities must reduce their electricity consumption. Because the university is the second biggest user of electricity in Bloemfontein we have to cut our consumption according to the new energy policy,” said Prof. Niel Viljoen, Chief Director of Operations at the UFS.

“Electricity is also expensive and if we look at global warming and everybody’s responsibility, I think we all have a moral obligation to save energy,” said Prof. Viljoen.

“The energy crisis of January 2008 and beyond, with its load-shedding limitations, was a major driver for the government to introduce the Power Conservation Scheme,” said Mr Anton Calitz, the UFS’s electrical engineer.

The measures put in place by the UFS include amongst others:

The introduction of a solar water-heating system in the residences, which is a first of its kind in Bloemfontein.
An investigation is also being launched into alternatives and the effective heating of rooms in the residences.

Feasibility studies are currently being conducted to determine whether energy saving can be achieved with radiation panels.

Energy-saving lights have been installed in the following buildings: the Architecture Building, Genmin Lectorium, Geology lecture halls, Winkie Direko Building, George du Toit Building, Sasol Library, Francois Retief Building, as well as in the residences. This measure has resulted in massive energy saving.

Energy meters for the Library, Computer Laboratory Building, François Retief Building and Steyn Substation are being planned as the first phase.

Real-time metering will result in every UFS computer user being aware of power consumption on the campus.

New lift motors and control systems that reduce energy consumption have been installed at the Agriculture and the George du Toit Buildings.

In the Computer Laboratory Building the temperature adjusting point for the venues is set at 22 °C and, in the case of new projects, green guidelines are applied.

It is expected that the government and local authorities will bring more pressure to bear on the UFS to save energy. Applications for increased capacity will possibly be linked to energy-saving targets.

This trend will continue until 2014 when additional power stations will be put into operation.

“Our aim is to save 10% on energy consumption,” said Prof. Viljoen.

“Heavy financial penalties will be imposed if a 10% saving is not achieved,” added Mr Calitz.

On average, our energy consumption per day this year is 128,964 kWh as compared to last year’s 119,752 kWh.

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt.stg@ufs.ac.za  
14 September 2009

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept