Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 November 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
UFS green concrete
The Department of Engineering Sciences (EnSci) welcomes collaborations with other departments at the UFS. Pictured here are, from the left: Louis Lagrange, Head of EnSci, Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management, Dr Abdolhossein Naghizadeh, and Megan Welman-Purchase, analytical scientist in the Department of Geology.

More than 30 million tonnes of fly ash (residue from coal combustion in power plants) are generated in South Africa annually, with 96% of that being disposed of in landfills. There is thus more than enough of this key ingredient to produce green concrete. 

Green concrete, so called due to its environmentally friendly benefits, is an eco-friendly alternative to conventional concrete based on the Portland cement binder. During the production of green concrete, less carbon dioxide is released into the atmosphere than with the production of ordinary Portland cement (OPC). The latter accounts for up to 8% of all global carbon emissions.

Successful tests

In the Green Concrete Lab, established in 2021 within the Department of Engineering Sciences (EnSci) on the Bloemfontein Campus of the University of the Free State (UFS), Dr Abdolhossein Naghizadeh, Senior Lecturer, researcher, and engineer, is working on green cement and concrete projects.

He uses ‘geopolymer’ technology and a mix of waste materials, alkaline solutions, and recycled aggregates to form concrete mixtures that can provide properties similar to conventional concrete.

Besides being a synthesised inorganic material (not a petrochemical product), the geopolymer cement he introduced has the following properties: it is made from a reaction between aluminosilicate materials and strong alkalis (5-7% of the concrete mixture), it uses water and by-products as raw materials, it does not calcinate lime, thus giving it a low carbon emission, and it is also beneficial from a waste management point of view. 

The waste materials used can include waste from industrial and agricultural sources, such as fly ash, rice husk ash, sugar-cane bagasse, or corncob ash, as well as natural materials such as volcanic ash. In South Africa, sufficient amounts of industrial and agricultural waste are available. 

“So far, we have successfully tested various types of green concrete based on different waste materials,” says Dr Naghizadeh. 

Besides researching the green mixture proportions in the lab, Dr Naghizadeh and his students focused their attention on establishing the strength, durability, workability, and production cost of the product. 

They compared green concrete with conventional concrete. Green concrete’s workability is slightly lower (but he believes that with appropriate mix design it can be corrected), and it has a much higher compressive strength (50-90 MPa), a smaller carbon footprint, and comparable production costs to conventional concrete (depending on the mix design). A very high level of resistance against alkali-silica reaction (concrete cancer) is also present, as well as resistance to carbonation, sulphate attack, and acid attack.
So far, we have successfully tested various types of green concrete based on different waste materials.– Dr Naghizadeh. 

He explains, “The superior durability performance of green concrete is related to its chemical compositions and microstructure. For example, the lack of calcium content in the composition provides better resistance to alkali-silica reaction. At the same time, stronger bonds between elements and polymeric microstructure provide better resistance against acids and fire.”

With all the work and research of the past year and a half, Dr Naghizadeh says they are at the stage where they can prescribe green concrete production recipes for the industry parties based on the specified application and the materials they have.

Biggest accomplishments

“We transferred most of the experimental works to the Green Concrete Lab at the beginning of 2022, which improved our productivity tremendously. Since then, nine journal papers and three peer-reviewed conference papers have been published as outputs of the research projects. Currently, there are also multiple publications under review or in the development stages,” says Dr Naghizadeh.

In addition to him, there are three master's students and one research associate working on their own individual projects.

The department is very proud of its research outputs. Dr Naghizadeh was either author or co-author of all 12 research papers. The focus of these papers was mostly on the formulation of green concrete, based on locally available agricultural waste materials, the formulation of one-part geopolymer cement (when aluminosilicate raw material is replaced with pre-activated aluminosilicate material, water can be used instead of alkali solution), and the development of ambient-cured green concrete (replacing the aluminosilicate raw material with a blend of materials).

Dr Naghizadeh is also the project leader of a group of scientists from local and international universities who are researching sustainable construction materials. These institutions include the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, Erzurum Technical University in Turkey, as well as Nelson Mandela University and the Central University of Technology, which recently came on board. 

 


 


News Archive

Fracking in the Karoo has advantages and disadvantages
2012-05-25

 

Dr Danie Vermeulen
Photo: Leatitia Pienaar
25 May 2012

Fracking for shale gas in the Karoo was laid bare during a public lecture by Dr Danie Vermeulen, Director of the Institute for Groundwater Studies (IGS). He shared facts, figures and research with his audience. No “yes” or “no” vote was cast. The audience was left to decide for itself.

The exploitation of shale gas in the pristine Karoo has probably been one of the most debated issues in South Africa since 2011.
 
Dr Vermeulen’s lecture, “The shale gas story in the Karoo: both sides of the coin”, was the first in a series presented by the Faculty of Natural and Agricultural Science under the theme “Sustainability”. Dr Vermeulen is a trained geo-hydrologist and geologist. He has been involved in fracking in South Africa since the debate started. He went on a study tour to the USA in 2011 to learn more about fracking and he visited the USA to further his investigation in May 2012.
 
Some of the information he shared, includes:

- It is estimated that South Africa has the fifth-largest shale-gas reserves in the world, following on China, the USA, Argentina and Mexico.
- Flow-back water is stored in sealed tanks and not in flow-back dams.
- Fracturing will not contaminate the water in an area, as the drilling of the wells will go far deeper than the groundwater aquifers. Every well has four steel casings – one within the other – with the gaps between them sealed with cement.
- More than a million hydraulic fracturing simulations took place in the USA without compromising fresh groundwater. The surface activities can cause problems because that is where man-made and managerial operations could cause pollution.
- Water use for shale-gas exploration is lower than for other kinds of energy, but the fact that the Karoo is an arid region makes the use of groundwater a sensitive issue. Dr Vermeulen highlighted this aspect as his major concern regarding shale-gas exploration.
- The cost to develop is a quarter of the cost for an oil well in the Gulf of Mexico.
- Dolerite intrusions in the Karoo are an unresearched concern. Dolerite is unique to the South African situation. Dolerite intrusion temperatures exceed 900 °C.

He also addressed the shale-gas footprint, well decommissioning and site reclamation, radio activity in the shale and the low possibility of seismic events.
 
Dr Vermeulen said South Africa is a net importer of energy. About 90% of its power supply is coal-based. For continued economic growth, South Africa needs a stable energy supply. It is also forecast that energy demand in South Africa is growing faster than the average global demand.
 
Unknowns to be addressed in research and exploration are the gas reserves and gas needs of South Africa. Do we have enough water? What will be the visual and social impact? Who must do the exploration?
 
“Only exploration will give us these answers,” Dr Vermeulen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept