Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

Miss Deaf SA inspires UFS teachers with her life story
2009-11-26

Pictured from the left, are: K. Botshelo, Vickey Fourie (Miss Deaf SA) and A. Morake.

Vicki Fourie, Miss Deaf SA 2009 and Miss Deaf HESC, recently visited the University of the Free State to motivate aspiring Foundation Phase teachers by sharing her life story with them.

When Vicki was two years old, her parents found out that she couldn’t speak. Two possible explanations were that she had had an ear infection or speech problems. They took her to a specialist and after a brain scan they found out that Vicki had 97% hearing loss in both ears.

Hearing aids were required and Vicki’s father, Pastor Gerhard Fourie from the Christian Revival Church (CRC) enrolled her in a kindergarten school for deaf children, Carel Du Toit in Cape Town.

However, even though Carel Du Toit’s slogan is ‘Where Deaf Children Learn to Speak’, it was because of her mother’s efforts that Vicki is able to communicate effectively with hearing people today.

Bonita Fourie would sit with her child every single day and teach her how to pronounce words phonetically and how to read lips. It is because of that that Vicki is not dependent on sign language at all.

When she was seven years old, her parents enrolled her in an English A.C.E. school. Even though Vicki’s home language is Afrikaans, her parents decided to go against the norm by placing her in an English school (most deaf/hard of hearing people cannot learn a second language). Today Vicki is fluent in both languages.

“I used to think that my hearing aids are just a normal thing you put on, like using glasses for reading,” she said. “I still think that way. People always come up to me and say, ‘It’s amazing how easily you adapt to hearing people. You have no stumbling blocks or holdbacks.’

“To me it’s interesting because my reaction is always this: ‘God gave me this situation, and I have made the best of it. I’ve overcome it, and therefore I can go forward in life’. We were born not to survive, but to thrive. I detest the attitude of, ‘I’m a victim, so the world owes me something’. The world owes nobody anything! We can be victorious over our own circumstances. It is possible. My name’s meaning is testifies to this: “Vicki” comes from the word “Victory”. I was meant to be victorious, and not a victim.”

Vicki, who is now 20, has achieved so much in life. She did ballet, hip-hop, modern dancing, drama (she even went to America for her dramatic monologue and poetry recitation), and she has published over 70 magazine articles, nationally and internationally. Her dreams are to write books one day, become a TV presenter, and motivate and inspire people all over South Africa through public speaking.

When one hears this story, one cannot help but be surprised by her success. It makes you realize that anything is possible when you see the potential in a child, and then do everything in your power to develop it and draw it out. When you believe in the child that you are educating, that child will sense it and blossom like a flower.

“Courage isn’t a gift, it is a decision,” Vicki said. “There will always be things that try to hold you back. The key to working with any child is to be patient, patient, and patient! Teachers play a huge role in equipping children for the future. It is a big responsibility, but it can be done.”
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept