Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 January 2024 | Story Leonie Bolleurs
UFS scientists contribute to the battle against cancer
From top left, moving clockwise: Dr Nerina van der Merwe, Dr Osayande Evbuomwan, Prof Alicia Sherriff, Profs Andreas Roodt and Alice Brink.

Cancer stands as a prominent contributor to deaths worldwide, with a big impact on families and communities. Prostate cancer is one of the leading causes of mortality in the world. The recent diagnoses of cervical cancer are 10 702 annually, with 5 870 patients passing away. Female breast cancer surpassed lung cancer as the most commonly diagnosed cancer in 2020 (American Cancer Society), representing 11,7% of all cancer cases, making it the fifth leading cause of cancer mortality worldwide. Researchers at the university are doing their part in the fight against cancer.

Treating prostate cancer

In July 2021, Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, along with a team of university doctors, initiated patient treatment using radioligand therapy (RLT). This targeted nuclear medicine therapy delivers high radiation levels precisely to cancer cells, minimising damage to normal organs and tissue, a benefit not typically provided by conventional therapies.

It was the first time that Lutetium 177 PSMA – a type of PRRT – has been used to treat patients with metastatic castrateresistant prostate cancer (MCRPC) in the Free State, providing hope when standard treatments and conventional therapy are not an option. This treatment generally enhances quality of life, slows disease progression, and extends overall survival, with minimal side effects.

All three patients treated with Lu 177 PSMA so far have completed at least four therapy cycles and tolerated it well. The first two patients, while initially responding well, sadly passed away due to unrelated causes. The third case stands out as the most successful, responding excellently to seven treatment cycle and remaining in good health.

Dr Evbuomwan recently also obtained a license for a more effective therapy, AC 225 PSMA, as an alternative to Lu 177 PSMA.

Precise cervical cancer therapy

Medical personnel at the Universitas Academic Hospital also became the first in Southern Africa to use interstitial brachytherapy as a method for treating cervical cancer. Prof Alicia Sherriff, Head of the Department of Oncology, explains that brachytherapy – a form of internal radiation therapy – places the radiation source near or inside the cancer. “Precise delivery of curative doses to the cancer protects surrounding organs such as the bladder, rectum, and small bowel,” she explains.

Three to five weekly brachytherapy sessions under conscious sedation usually begins after two weeks of daily external beam radiation. On brachytherapy days, external beam radiation is not administered. “The intracavitary brachytherapy applicators are placed within the cervix and uterus and deliver high doses locally, but for surrounding tissue infiltration, additional needles are inserted via the Venezia applicator, delivering high-dose radiation while sparing organs,” says Prof Sherriff.

Their work aligns with the broader goals of the university and its commitment to advancing health care in the region by ensuring the continued growth of their skills and technology, while applying these skills to improve the possibility of disease control, cure or palliation with quality of life.

Familial breast and ovarian cancer testing

Dr Nerina van der Merwe, a principal medical scientist in the Division of Human Genetics, and colleagues are engaged in breast cancer research. They are involved in translational research using new technologies that, once validated as a first-tier diagnostic test, could revolutionise genetic testing for familial breast and ovarian cancer in South Africa when used in conjunction with genetic counselling. This parallel application is ideally suited for primary hospitals and rural clinics, as it will dramatically increase accessibility and uptake of genetic testing in rural areas.

By performing first-tier genetic testing at a community clinic, patients no longer have to be transported to tertiary hospitals for testing, and more patients and related family members who are unaware of a familial predisposition will be reached. “By warning unaffected related individuals about their potential increased risk, we can play a part in the earlier detection or diagnosis of patients, improving their cancer survival rate,” states Dr Van der Merwe.

Patenting cancer research

Prof Andreas Roodt, a retired Distinguished Professor in the Department of Chemistry, and colleagues – particularly Prof Alice Brink and co-worker Prof Roger Alberto from the University of Zurich – have published widely on the chemistry of radiopharmaceutical models. Since the 2000s, the world has introduced the concept of ‘theranostics,’ which involves the use of a single compound for both cancer detection and therapy. “These compounds contain a radioisotope that provides internal radiation for cancer detection (diagnostic) and a second part for treatment,” explains Prof Roodt.

Their research enables the high-yield preparation of compounds containing multiple isotopes often present in very low concentrations. “This allows combining diagnostic isotopes such as technetium-99m (used in >80% of diagnostic patient studies worldwide) with therapeutic radioisotopes, such as rhenium-186 (used for bone cancer therapy), with ease. Many therapeutic radioisotopes do not have good diagnostic radiation; thus, by combining the two types of radioisotopes in one medicine, the oncologist can now clearly see where the therapeutic part is going and apply more effective treatment,” he says.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept