Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 January 2024 | Story Leonie Bolleurs
UFS scientists contribute to the battle against cancer
From top left, moving clockwise: Dr Nerina van der Merwe, Dr Osayande Evbuomwan, Prof Alicia Sherriff, Profs Andreas Roodt and Alice Brink.

Cancer stands as a prominent contributor to deaths worldwide, with a big impact on families and communities. Prostate cancer is one of the leading causes of mortality in the world. The recent diagnoses of cervical cancer are 10 702 annually, with 5 870 patients passing away. Female breast cancer surpassed lung cancer as the most commonly diagnosed cancer in 2020 (American Cancer Society), representing 11,7% of all cancer cases, making it the fifth leading cause of cancer mortality worldwide. Researchers at the university are doing their part in the fight against cancer.

Treating prostate cancer

In July 2021, Dr Osayande Evbuomwan, Senior Lecturer and Medical Specialist in the Department of Nuclear Medicine, along with a team of university doctors, initiated patient treatment using radioligand therapy (RLT). This targeted nuclear medicine therapy delivers high radiation levels precisely to cancer cells, minimising damage to normal organs and tissue, a benefit not typically provided by conventional therapies.

It was the first time that Lutetium 177 PSMA – a type of PRRT – has been used to treat patients with metastatic castrateresistant prostate cancer (MCRPC) in the Free State, providing hope when standard treatments and conventional therapy are not an option. This treatment generally enhances quality of life, slows disease progression, and extends overall survival, with minimal side effects.

All three patients treated with Lu 177 PSMA so far have completed at least four therapy cycles and tolerated it well. The first two patients, while initially responding well, sadly passed away due to unrelated causes. The third case stands out as the most successful, responding excellently to seven treatment cycle and remaining in good health.

Dr Evbuomwan recently also obtained a license for a more effective therapy, AC 225 PSMA, as an alternative to Lu 177 PSMA.

Precise cervical cancer therapy

Medical personnel at the Universitas Academic Hospital also became the first in Southern Africa to use interstitial brachytherapy as a method for treating cervical cancer. Prof Alicia Sherriff, Head of the Department of Oncology, explains that brachytherapy – a form of internal radiation therapy – places the radiation source near or inside the cancer. “Precise delivery of curative doses to the cancer protects surrounding organs such as the bladder, rectum, and small bowel,” she explains.

Three to five weekly brachytherapy sessions under conscious sedation usually begins after two weeks of daily external beam radiation. On brachytherapy days, external beam radiation is not administered. “The intracavitary brachytherapy applicators are placed within the cervix and uterus and deliver high doses locally, but for surrounding tissue infiltration, additional needles are inserted via the Venezia applicator, delivering high-dose radiation while sparing organs,” says Prof Sherriff.

Their work aligns with the broader goals of the university and its commitment to advancing health care in the region by ensuring the continued growth of their skills and technology, while applying these skills to improve the possibility of disease control, cure or palliation with quality of life.

Familial breast and ovarian cancer testing

Dr Nerina van der Merwe, a principal medical scientist in the Division of Human Genetics, and colleagues are engaged in breast cancer research. They are involved in translational research using new technologies that, once validated as a first-tier diagnostic test, could revolutionise genetic testing for familial breast and ovarian cancer in South Africa when used in conjunction with genetic counselling. This parallel application is ideally suited for primary hospitals and rural clinics, as it will dramatically increase accessibility and uptake of genetic testing in rural areas.

By performing first-tier genetic testing at a community clinic, patients no longer have to be transported to tertiary hospitals for testing, and more patients and related family members who are unaware of a familial predisposition will be reached. “By warning unaffected related individuals about their potential increased risk, we can play a part in the earlier detection or diagnosis of patients, improving their cancer survival rate,” states Dr Van der Merwe.

Patenting cancer research

Prof Andreas Roodt, a retired Distinguished Professor in the Department of Chemistry, and colleagues – particularly Prof Alice Brink and co-worker Prof Roger Alberto from the University of Zurich – have published widely on the chemistry of radiopharmaceutical models. Since the 2000s, the world has introduced the concept of ‘theranostics,’ which involves the use of a single compound for both cancer detection and therapy. “These compounds contain a radioisotope that provides internal radiation for cancer detection (diagnostic) and a second part for treatment,” explains Prof Roodt.

Their research enables the high-yield preparation of compounds containing multiple isotopes often present in very low concentrations. “This allows combining diagnostic isotopes such as technetium-99m (used in >80% of diagnostic patient studies worldwide) with therapeutic radioisotopes, such as rhenium-186 (used for bone cancer therapy), with ease. Many therapeutic radioisotopes do not have good diagnostic radiation; thus, by combining the two types of radioisotopes in one medicine, the oncologist can now clearly see where the therapeutic part is going and apply more effective treatment,” he says.

News Archive

R40 million construction contract with black empowerment group starts at UFS
2006-09-04

During the ceremonial kick-off of the biggest construction project in the history of the UFS were from the left: Ms Vuyiwe Mkhupha (Manager of   Sikeyi Construction), Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS) and Prof Steve Basson (Head of the UFS Department of Chemistry). Photo: (Gerhard Louw)

R40 million construction contract with black empowerment group starts at UFS   

The biggest construction contract in the history of the University of the Free State (UFS) to the value of R40 million has started on the Main Campus in Bloemfontein.  The contractors are Ströhfeldt Construction, in a joint venture with Sikeyi Construction, a black empowerment partner.

The contract comprises the extensive modernising, refurnishing and extension of the Chemistry Building.  This is the highest amount the UFS has ever spent on the refurnishing of a building. 
 
A number of initiatives have contributed to the fact that the UFS Department of Chemistry is one of the foremost chemistry departments in the country:
 

  • Expensive equipment and apparatus to the value of almost R20 million were acquired by the department the past year;
  • The basis of this is a strategic partnership with Sasol, the biggest research and development company  in the country;
  • The purchase of the most advanced 600MHz nuclear magnetic resonance spectro meter in Africa;
  • The purchase of a single crystal X-ray diffractometer; and
  • The purchase of a differential scanning calorie meter, used to test the effect of heat on chemicals.  This apparatus comprises of the most advanced detectors in the world.

“Natural scientists need the necessary equipment, apparatus and laboratories to be able to exercise world-class science.  Three years ago the UFS top management made a strategic decision to focus strongly on research and on our  laboratories and lecture halls,“ said Prof Frederick Fourie, Rector and Vice-Chancellor of the UFS, during the launch of the Chemistry Building’s refurbishment.

“I regard this project as a symbol of our investment in science and the academy,“ said Prof Fourie.

Prof Fourie said that the UFS spent almost R100 million in the last 5 years to renovate the Main Campus.  New buildings such as Thakaneng Bridge were built and other such as the Reitz Dining Hall was renovated and converted into the Centenary Complex.  “These projects, together with the refurbishment of the Chemistry Building, also show how the UFS contributes to the development and growth of not only Bloemfontein, but also how we invest in the Free State,“ said Prof Fourie.

According to Ms Edma Pelzer, Director: Physical Planning and Special Projects at the UFS, the current building originally comprised of the Moerdyk Building built in 1949 and a newer wing built in 1966.  This building became too small and obsolete and a new part is now being added to the eastern side.
  
According to Ms Pelzer a great deal of the project comprises the dramatic upgrading and modernising of laboratories, existing mechanical systems and the installation of new systems.  “The nature of the work of staff and students demands sophisticated mechanical systems such as air conditioning, fume hoods, the provision of gas, etc and therefore these received specific attention.  The research laboratories, lecture laboratories and office areas will also be separated for safety and greater efficiency,” said Ms Pelzer.

“Interesting design solutions for the complex needs of the department were found and I foresee that the building and its immediate environment will be an adornment to the Main Campus after its expected completion in 2008,” said Ms Pelzer.

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
14 September 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept