Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 May 2024 | Story Anthony Mthembu | Photo Jon Vincent
Ibali
Educators, academics, and policymakers in attendance at the Ibali Education Stakeholders Forum.

The Centre for Development Support (CDS) at the University of the Free State (UFS), in collaboration with Ibali, hosted the Ibali Education Stakeholders Forum on 10 May 2024 at the Centenary Complex on the UFS Bloemfontein Campus. 

According to Prof Faith Mkwananzi, Associate Professor at the CDS, the event, an initiative of the Ibali Project, aimed to ‘’inform and disseminate project findings to individuals with an interest in educational exclusion and inclusion. It also served as a forum for stakeholders to share insights on the matter. “ The forum was well attended by educators, school leaders, academics, and policymakers from the Free State. Additionally, the event saw representation from Ibali, including Dr Alison Buckler, Deputy Director of the Centre for the Study of Global Development (CSGD) at The Open University.

A platform for engagement

Discussions at the forum focused on creating inclusive learning environments for learners and students within the province and beyond. Stakeholders had the opportunity to discuss the challenges they face in fostering inclusive learning spaces through panel discussions and presentations. ’’The involvement of stakeholders and presentation of diverse perspectives contributed to a robust engagement, indicating that individuals and organisations are motivated to support an inclusive and sustainable education system at every level in South Africa,’’ said Prof Mkwananzi.

The Ibali initiative

Dr Buckler explained that Ibali is a network of researchers, practitioners, and educators interested in how storytelling can support different understandings around complex issues in education and development. One of Ibali’s projects, funded by the United Kingdom Arts and Humanities Research Council (AHRC), explores what inclusion and exclusion look like within education in countries like Nigeria, South Africa, and the United Kingdom.

Insights from the engagement

Dr Buckler highlighted several insights from the forum. She noted that inclusive practice can manifest in various ways. ‘’People talked about mixing groups of students in lectures, creating a supportive community for their deaf sibling, mainstream schools inviting children from ‘special schools’ for play sessions, and so on,’’ she said. Moreover, she emphasised that a key takeaway is that “underpinning hugely diverse examples of inclusive practice are a fairly small number of key principles around empathy, communication, ubuntu, and seeing someone as whole instead of defining people by certain characteristics that align with inclusion policies.”

As the engagement session concluded, both Prof Mkwananzi and Dr Buckler expressed hope that stakeholders could learn from one another’s experiences, fostering a more inclusive educational environment.  

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept