Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 January 2025 | Story Leonie Bolleurs | Photo Anja Aucamp
Food Garden
Students transport fresh vegetables from the university's sustainable vegetable tunnels for distribution to their peers. These vegetables play a role in promoting healthy eating habits and ensuring students have access to healthy meals, making a difference in their overall well-being and academic success.

“I’m writing this email to express my gratitude for what you and your office do. I don’t think you can fully understand how grateful I am for the food parcels. I’m able to go to bed with food in my stomach, all because of you and your team, and for that, I am so thankful. Before I found out about your office, I was stressed about where my next meal would come from. Now, I perform incredibly well in my studies. I honestly pray and hope that the office continues to receive the support it needs to continue being of assistance to those in need.” 

This letter is one of many received by the UFS Food Environment Office, highlighting the important role the university plays in supporting students struggling with food insecurity. 

Healthy food choices 

Five years ago, the university established the institutional Food Environment Committee (FETC) to provide guidance and recommendations to the university administration on matters relating to the food environment of the university. The aim of the FETC is to promote healthy and sustainable food choices across all three UFS campuses. 

The committee is also responsible for assessing the food needs of vulnerable groups to ensure inclusive and accessible programmes, overseeing strategy implementation, and advocating participation across the campus. Additionally, they ensure that university policies do not detract from the policies and activities of the Food Environment Strategy in order to promote a culture of health and wellness across the UFS. The committee also engages in continuous planning and budgeting to keep the strategy relevant and effective. 

Some of their key strategic objectives include strengthening sustainability through more collaborative food projects and partnerships. They also aim to improve food security by increasing affordable, nutritious meal options. These also talk to the number of students supported through food bursaries, and the quantity of food items distributed through food banks. Other goals focus on ensuring dignity and inclusivity, and activating residences, student associations, and faculty organisations in the food environment programme.  

Dr WP Wahl, Director of Student Life in the Division of Student Affairs, explains that the committee includes stakeholders from academic, support services, and student groups. Its purpose is to oversee different priority projects within the institution that speak to addressing hunger and malnutrition among students. Key members include Student Affairs, the Student Representative Council, food service providers, Kovsie Act, and faculty representatives, such as the Department of Nutrition and Dietetics in the Faculty of Health Sciences and the Department of Sustainable Food Systems and Development in the Faculty of Natural and Agricultural Sciences. These departments play a vital role in empowering and educating students, sharing information through videos, podcasts, and recipes on Facebook, the Food Environment webpage, and the Student Newsletter, as well as the Eat&Succeed page on Blackboard. 

The Department of Nutrition and Dietetics is also closely involved in research, ensuring that decisions are based on scientific data. For instance, they compiled the 2021 and 2022 UFS Food Environment Task Committee Report, revealing that only 27% of UFS students are food secure, with 74% experiencing various degrees of food insecurity. In 2022, 39% of students reported going without food for a day because they could not afford it,  and for 13%, this was almost a daily occurrence. 

This research also examined, among others, eating patterns, food purchasing behaviours, and preparation habits that guide decisions to improve the university’s food environment and inform messaging to students. 

Also playing a key role in executing the goals of the committee is the Department of Sustainable Food Systems and Development and Kovsie Act with the vegetable tunnels that were created on the Bloemfontein Campus and now on the South Campus for a sustainable flow of fresh produce that is channelled towards the food bank. 

A supportive environment 

The goal of promoting collaboration and mutually beneficial partnerships is to make a difference in the food environment at the university. Annelize Visagie, who is heading the Food Environment Office, highlights the university’s partnerships with major sponsors such as Gift for the Givers and Tiger Brands, who assist with food parcels. The No Student Hungry Programme (NSH) also has donors supporting its bursary initiative. 

Since 2011, the university has made great strides in combating food insecurity through the NSH, which has supported the graduation of 875 students. Visagie finds it particularly rewarding to witness these graduates celebrate their achievements alongside their families, who express gratitude for the assistance provided. Such moments affirm the positive impact of their efforts in creating a supportive environment for students in need. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept