Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

Anchen Froneman selected for NY post-grad programme
2015-04-29

Anchen Froneman

Anchen Froneman, PhD-student at the UFS Odeion School of Music (OSM), has been accepted into the Modular Certification Programme in Laban Movement Studies at the Laban/Bartenieff Institute of Movement Studies (LIMS), in New York (USA). 

This programme is a postgraduate certificate that is considered the equivalent of a master’s degree programme. Successful completion earns the title of Certified Movement Analyst (CMA).  Anchen’s attendance at the first module of the programme from 1 to 17 June 2015 has been made possible by a Postgraduate Scholarship granted by the Oppenheimer Memorial Trust.

Participation in the CMA Programme stems from her multidisciplinary doctoral research project as well as a personal interest in the ways that body movement contributes to a holistic musical performance.  In her research project, she investigates the application of Laban Movement Studies to obtaining embodied, integrative piano performances.  Laban Movement Studies is an approach whereby both the quantitative and qualitative aspects of body movement is analysed, codified, and developed, using specific considerations. This somatic approach uses a framework based on the personal uniqueness and complexity embedded in human movement, explaining and developing the organisation of the body, the position and relation of the body to itself, space, and other objects as well as the dynamic range of body movement. 

CMAs contribute to various areas of human development, including leadership development, cross-cultural communications and management, interpersonal skills and conflict management, team development, self-awareness and performance improvement, performing arts as well  as movement therapies.

Anchen uses the foundation of the Laban approach in her hypothesis that the development of both functional and expressive movement will enhance musical performance.  She also centres this on the literature findings on body movement in the disciplines of music performance, neuroscience, psychology, and physiology. With this project, she aims to make a scholarly contribution towards raising awareness of the importance of integrating functional and expressive movements in performance.

Anchen completed her previous music qualifications at the OSM.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept