Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 August 2021 | Story André Damons | Photo André Damons
Dr Osayande Evbuomwan is a Senior Lecturer and medical specialist in nuclear medicine in the Department of Nuclear Medicine, Faculty of Health Sciences, at the University of the Free State (UFS).

The University of the Free State (UFS) Department of Nuclear Medicine has, for the first time, started using Lutetium 177 PSMA (Lu-177 PSMA) therapy for the treatment of metastatic castrate-resistant prostate cancer (MCRPC) – an advanced stage of prostate cancer.

The UFS and the Free State province are now joining other South African universities, such as the University of Pretoria, the University of the Witwatersrand, and other provinces in using this method to treat MCRPC patients. 

Dr Osayande Evbuomwan, a Senior Lecturer and medical specialist in the Department of Nuclear Medicine, Faculty of Health Sciences, says they have started treating their first MCRP patient (first cycle) with peptide receptor radionuclide therapy (PRRT) on 15 July. It is the first time that Lutetium 177 PSMA – a type of PRRT used for treating patients with MCRPC – has been used in the Free State. This method is used on MCRPC patients who are not eligible for chemotherapy or have failed first- or second-line chemotherapy.

Expertise and funds are now available for this treatment

Dr Evbuomwan was trained and exposed to this therapy at the University of the Witwatersrand during his registrar training in nuclear medicine. When he joined the UFS in 2019, he – with the always available help of the Head of Department, Dr Gerrit Engelbrecht – pushed for the therapy to be used in the department. 

“We in the Department of Nuclear Medicine are happy that expertise is now available and that some funds have been released for this treatment to commence. The index patient is very sick with MCRPC and was too sick to qualify for first-line chemotherapy. Each patient will need about four-six cycles for complete treatment. The patient is being treated in the Department of Nuclear Medicine at the Universitas Academic Hospital and Annex.” 

“We are hoping that he will be able to complete at least four cycles and respond well to the treatment. We believe that the ability to administer this treatment now is good news for the Free State, as the people of the Free State also deserve to be exposed to this level of treatment. We are hoping that the government will continue to provide more funds for more of these patients to be treated in our facility,” says Dr Evbuomwan.

It was budgeted to treat five patients (20 cycles), with each cycle (just the Lu-177 PSMA) costing more than R50 000. 

A googled image from the internet of a case before, during, and after completing the full course of therapy. The first image is before
treatment and the last image is after completing treatment, while the images in between are during treatment.
(Source: Google) 

Prostate cancer one of the leading causes of morbidity and mortality

Dr Evbuomwan says prostate cancer is one of the leading causes of morbidity and mortality in the world, including South Africa. When it progresses to the advanced stage of MCRPC, the prognosis becomes bad. 

Dr Evbuomwan explains that there are various conventional systemic therapies, including first- and second-line chemotherapy that could be used to treat patients at this bad stage. However, not all patients are fit for chemotherapy. The few who are fit, according to Dr Evbuomwan, usually end up failing the first-line chemotherapy, which has a lot of undesirable side effects and require long-stay hospital admissions. 

Only a few centres are able to offer second-line chemotherapy. So many of these patients end up suffering from prolonged bone pains before eventually dying from the disease.

PRRT is a targeted nuclear medicine therapy that offers the opportunity to deliver very high levels of radiation specifically to cancer cells, because these cancer cells express specific receptors to which certain peptides can bind. This specificity to cancer cells offers the advantage of providing lower doses of radiation and damage to normal organs and tissues, a characteristic that conventional therapies do not offer, explains Dr Evbuomwan.  

According to him, Lutetium 177 PSMA (Lu-177 PSMA) is a type of PRRT used for treating patients with MCRPC, who are not eligible for chemotherapy or have failed first-line chemotherapy. Numerous research studies around the world have proven that this treatment improves quality of life, slows down disease progression, and improves overall survival, with little or very tolerable side effects in most patients. 

The University of Pretoria is one of the pioneers of this treatment in the world, having done a lot of research with it since 2017. Other provinces such as the Western Cape and KwaZulu-Natal have also recently become involved with the therapy. This therapy is expensive and requires a lot of expertise. It also involves the input of a multidisciplinary team (MDT), which must at least include a nuclear medicine physician, a radiation oncologist, and a urologist. The Departments of Urology and Radiation Oncology at the UFS were also instrumental in the initiation of the therapy and form part of the MDT team at the UFS in the management of these patients.

Treatment puts department, university, and hospital on the map

Dr Evbuomwan says the ability to administer this treatment puts the department, the UFS, and the hospital on the map, alongside other top universities within and outside the country. “It also creates an avenue for us to gather data for research purposes and for publications. We are now able to offer a promising, safe, and highly efficacious therapy for patients with MCRPC in the Free State. Some of these patients no longer need to travel to other provinces to get the treatment.”

There are plans to expand the treatment to more patients – and hospital management, who were present at the first treatment, are excited and looking forward to the outcome of this current treatment.

Watch video below:

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept