Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 August 2023 | Story Andre Damons | Photo Andre Damons
Dr Kgomotso Moroka
Dr Kgomotso Moroka, Acting HOD: Cardiology in the UFS Faculty of Health Sciences, recently graduated from Maastricht University with a Diploma of Advanced Studies in Cardiac Arrhythmia Management (DAS-CAM).

A staff member from the University of the Free State (UFS) is hopeful her newly acquired skills and knowledge, following her graduation with a Diploma of Advanced Studies in Cardiac Arrhythmia Management (DAS-CAM) and completion of a electrophysiology fellowship, will contribute to the improvement of cardiovascular services in the Free State and Sub-Saharan Africa.

Dr Kgomotso Moroka, the Acting Head of Department (HOD) for Cardiology in the UFS Faculty of Health Sciences, recently graduated with a DAS-CAM in June 2023. This distinctive postgraduate programme is offered by Maastricht University in collaboration with the European Heart Rhythm Association and the European Society of Cardiology. This is a two-year programme and Dr Moroka was part of the third cohort which comprised 32 electrophysiologists selected from over 20 countries worldwide.

Her achievement places her as the sole   DAS-CAM graduate in Sub-Saharan Africa and the Free State region. 
Electrophysiology, which studies the electrical influences and patterns of the heart is vital for treating patients with abnormal heartbeats caused by irregularities in the heart’s electrical pathway, resulting in either unusually slow or fast heartbeats.

Seizing a valuable opportunity

Dr Moroka emphasises that currently, there is a lack of electrophysiology services provided in both the public and private sectors within the Free State. She therefore anticipates that her newly acquired skills and knowledge will play a pivotal role in enhancing and improving the cardiovascular services offered in the province. She is also optimistic about contributing to the establishment of a department dedicated to Electrophysiology Training. 

“I could not pass up the opportunity to engage with, learn and gain insights from seasoned world-class great minds of electrophysiology, who write the books we read and the very guidelines that we utilize in our daily practices. There was also an opportunity to be guided in research and the state-of-the-art cardiac clinical electrophysiology while also obtaining insights into how to develop a cardiac arrhythmia centre, biostatics, health economics, leadership skills and health technology assessment,” Dr Moroka explains regarding her motivation to enrol in the program. 

“It was a challenging and exciting program that allowed participants to engage with the world-renowned experts in electrophysiology not only on a professional but also personal level. This program served not only to educate participants on clinical cardiac electrophysiology but served to empower us to fulfil roles as future leaders in electrophysiology and in our day-to-day roles,” she continued.

Addressing the diverse burden of cardiac diseases

Dr Moroka believes that this qualification will significantly contribute to local efforts to establish and develop a much-needed unique service, thereby advancing her career development locally and on the international platform. This qualification enables her to expand her clinical research pursuits on multiple fronts.

Dr Moroka underscores the substantial burden of ischemic heart disease with the associated risk factors such as uncontrolled high blood pressure, diabetes, elevated cholesterol levels and smoking. “There is a measurable burden of heart failure and valvular heart disease. In addition, from the research that we hope to embark upon, we hope to clearly define the burden of rhythm problems such as atrial fibrillation and other arrhythmias which are serious conditions. With the available skills and knowledge, we can begin to offer alternative adjunctive treatment that would have a significant positive effect on the morbidity and/or mortality of our patients.”

Dr Moroka points out that with the advent and advances in machine learning and digital health technology, we are in an exciting era of possibilities of obtaining valuable biological data and biometric parameters that would assist in the reduction of risk and prevention of a diversity of cardiovascular diseases and to guide clinical practice guidelines. 

“The current focus is risk reduction, prevention of cardiovascular diseases and the establishment and development of personalized health care, with a growing interest in cardiovascular genetics and gene therapy.  Who knows what the future will bring, but for now the focus is to work towards good health and disease alleviation,” she says. 

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept